L01 Estimators and predictors

1. Estimator classes and predictor classes

 $\theta \in R^k$ is a parameter vector from a population system. $y_1, ..., y_n$ is a random sample from the system and $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$. $y_* \in R^k$ is an unknown random vector. Suppose $\hat{\theta} \in R^k$ and

 $\widehat{y}_* \in \mathbb{R}^k$ are statistics.

(1) Estimator classes

When θ is estimated by $\hat{\theta}$, $\hat{\theta}$ is called a point estimator (PE) for θ . If $E_{\theta}(\hat{\theta} - \theta) \equiv 0$, i.e., $E_{\theta}(\hat{\theta}) \equiv \theta$, then $\hat{\theta}$ is an unbiased estimator (UE) for θ . The collection of all UEs for θ is denoted as UE(θ).

 $\hat{\theta}$ is a linear estimator (LE) if $\hat{\theta} = Ly$ for some L. The collection of all linear unbiased estimators (LUEs) for θ is denoted as LUE(θ). Clearly

$$LUE(\theta) \subset UE(\theta).$$

(2) Predictor classes

When y_* is predicted by \hat{y}_* , \hat{y}_* is called a point predictor (PP) for y_* . If $E_{\theta}(\hat{y}_* - y_*) \equiv 0$, i.e., $E_{\theta}(\hat{y}_*) \equiv E_{\theta}(y_*)$, then \hat{y}_* is an unbiased predictor (UP) for y_* . The collection of all UP for y_* is denoted as UP(y_*).

 \hat{y}_* is a linear predictor (LP) if $\hat{y}_* = Ly$ for some L. The collection of all linear unbiased predictors (LUPs) for y_* is denoted as LUP (y_*) . Clearly

$$LUP(y_*) \subset UP(y_*).$$

(3) Same classes

$$UP(y_*) = UE(E(y_*))$$
 and $LUP(y_*) = LUE(E(y_*)).$

Proof. Show the first one only.

$$\widehat{y}_* \in \mathrm{UP}(y_*) \iff E_{\theta}(\widehat{y}_* - y_*) \equiv 0 \iff E_{\theta}(\widehat{y}_*) \equiv E_{\theta}(y_*) \iff E_{\theta}[\widehat{y}_* - E_{\theta}(y_*)] \equiv 0$$
$$\iff \widehat{y}_* \in \mathrm{UE}(E(y_*)).$$

- 2. Comparing estimators and predictors
 - (1) Risk function for estimators

With matrix-valued loss $L(\hat{\theta}, \theta)$ when θ is estimated by $\hat{\theta}$, the risk is $R_{\hat{\theta}}(\theta) = E_{\theta}[L(\hat{\theta}, \theta)]$. If both $\hat{\theta}$ and $\tilde{\theta}$ are estimators for θ and $R_{\hat{\theta}}(\theta) \leq R_{\tilde{\theta}}(\theta)$ for all θ , i.e., $R_{\tilde{\theta}}(\theta) - R_{\hat{\theta}}(\theta)$ is a non-negative definite matrix, then $\tilde{\theta}$ is inadmissible since it is dominated by $\hat{\theta}$. If in a class of estimators for θ , $\hat{\theta}$ dominates all other estimators, then $\hat{\theta}$ is the best estimator in that class w.r.t. the specified risk.

(2) Risk function for predictors With matrix-valued loss $L(\hat{y}_* y_*)$ when y_* is predicted by \hat{y}_* , $R_{\hat{y}_*}(\theta) = E_{\theta}[L(\hat{y}_*, y_*)]$ is the risk. If both \hat{y}_* and \tilde{y}_* are predictors for y_* and $R_{\hat{y}_*}(\theta) \leq R_{\tilde{y}_*}(\theta)$ for all θ , i.e., $R_{\tilde{y}_*}(\theta) - R_{\hat{y}_*}(\theta)$ is a non-negative definite matrix, then \tilde{y}_* is inadmissible since it is dominated by \hat{y}_* . If in a class of predictors for y_* , \hat{y}_* dominates all other predictors, then \hat{y}_* is the best estimator in that class w.r.t. the specified risk.

(3) Same classes

To identify best predictor in $UP(y_*)$ we need a risk function. To identify best estimator in $UE(E(y_*))$ we need a risk function. But two statistics classes $UP(y_*)$ and $UE(E(y_*))$ are equal.

To identify best predictor in $LUP(y_*)$ we need a risk function. To identify best estimator in $LUE(E(y_*))$ we need a risk function. But two statistics classes $LUP(y_*)$ and $LUE(E(y_*))$ are equal.

- 3. Two risk functions
 - (1) Two risk functions

For estimation,

 $E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'] \in \mathbb{R}^{k \times k}$ is MSCPE risk and $E[(\hat{\theta} - \theta)'(\hat{\theta} - \theta)] \in \mathbb{R}$ is MSE risk. If $\hat{\theta}$ dominates $\tilde{\theta}$ by MSCPE risk, then the domination holds by MSE risk. For prediction,

 $E[(\hat{y}_* - y_*)(\hat{y}_* - y_*)'] \in \mathbb{R}^{k \times k}$ is MSCPE risk and $E[(\hat{y}_* - y_*)'(\hat{y}_* - y_*)] \in \mathbb{R}$ is MSE risk. If \hat{y}_* dominates \tilde{y}_* by MSCPE risk, the the domination holds by MSE risk.

- **Ex1:** If $\hat{\theta}$ is the best estimator for θ in a class by MSCPE, then it is also the best in the class by MSE. If \hat{y}_* is the best predictor for y_* in a class by MSCPE, then it is also the best in the class by MSE.
- (2) Best estimator in $UE(\theta)$ and best predictor in $UP(y_*)$ by MSCPE

If $\hat{\theta} \in UE(\theta)$, then MSCPE risk is $E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'] = Cov(\hat{\theta})$.

Thus the best estimator in $UE(\theta)$ is the minimum variance-covariance matrix unbiased estimator (Minimum V-C UE).

If $\widehat{y}_* \in UP(y_*)$, then MSCPE risk is $E[(\widehat{y}_* - y_*)(\widehat{y}_* - y_*)'] = Cov(\widehat{y}_* - y_*).$

Ex2: If $\widehat{\theta} \in UE(\theta)$, then MSE risk is $E[(\widehat{\theta} - \theta)'(\widehat{\theta} - \theta)] = \sum_i var(\widehat{\theta}_i)$.

So the best estimator in $UE(\theta)$ by MSE risk is minimum total variance unbiased estimator.

(3) The case where y and y_* are independent

If y_* is independent to y, then the best predictor for y_* in UP(y_*) by MSCPE and the best estimator for $E(y_*)$ in UE($E(y_*)$) by MSCPE are equal.

Proof.

 $\begin{array}{l} \widehat{y}_* \text{ is the best predictor in } \operatorname{UP}(y_*) \text{ by MSCPE} \\ \Leftrightarrow & \widehat{y}_* \in \operatorname{UP}(y_*) \text{ and } \operatorname{Cov}(\widehat{y}_* - y_*) \leq \operatorname{Cov}(\widetilde{y}_* - y_*) \text{ for all } \widetilde{y}_* \in \operatorname{UP}(y_*) \\ \Leftrightarrow & \widehat{y}_* \in \operatorname{UE}(E(y_*)) \text{ and } \operatorname{Cov}(\widehat{y}_*) + \operatorname{Cov}(y_*) \leq \operatorname{Cov}(\widetilde{y}_*) + \operatorname{Cov}(y_*) \\ & \text{ for all } \widetilde{y}_* \in \operatorname{UE}(E(y_*)) \\ \Leftrightarrow & \widehat{y}_* \in \operatorname{UE}(E(y_*)) \text{ and } \operatorname{Cov}(\widehat{y}_*) \leq \operatorname{Cov}(\widetilde{y}_*) \text{ for all } \widetilde{y}_* \in \operatorname{UE}(E(y_*)) \\ \Leftrightarrow & \widehat{y}_* \text{ is the best estimator for } E(y_*) \text{ in } \operatorname{UE}(E(y_*)) \text{ by MSCPE.} \end{array}$

- (4) Two sufficient conditions
 - (i) If $\hat{\theta} \in UE(\theta)$, $\hat{\theta} = f(S)$ and S is a sufficient and complete statistics, then $\hat{\theta}$ is the best estimator in $UE(\theta)$ by MSCPE.
 - (ii) If $\hat{\theta} \in UE(\theta)$ and $Cov(\hat{\theta}) = CRLB(\theta) = [nI(\theta)]^{-1}$, then $\hat{\theta}$ is the best estimator in $UE(\theta)$ by MSCPE.