L01 Estimators and predictors

1. Estimator classes and predictor classes

6 € R* is a parameter vector from a population system. yi,...,y, is a random sample from

Y1

the system and y = | : |. v« € RF is an unknown random vector. Suppose 9 € R* and

Yn

Us € RF are statistics.

(1)

Estimator classes L R

When 6 is estimated by 6, 6 is called a point estimator (PE) for 6. If Ey(6 —0) =0, i.e.,
Ey(0) = 0, then 0 is an unbiased estimator (UE) for . The collection of all UEs for 6 is
denoted as UE(6). R

6 is a linear estimator (LE) if # = Ly for some L. The collection of all linear unbiased
estimators (LUEs) for 6 is denoted as LUE(#). Clearly

LUE(6) C UE(9).

Predictor classes

When y, is predicted by ¥, ¥x is called a point predictor (PP) for y.. If Ep(y« —ys) =0,
i.e., Ep(ysx) = Ey(y«), then ¥y, is an unbiased predictor (UP) for y,.. The collection of all
UP for y, is denoted as UP(ys).

U« is a linear predictor (LP) if . = Ly for some L. The collection of all linear unbiased
predictors (LUPs) for y, is denoted as LUP(y,). Clearly

LUP(y.) C UP(yx).
Same classes
UP(y.) = UE(E(y«)) and LUP(y.) = LUE(E(yx)).
Proof. Show the first one only.

Y« € UP(yx) <= Ep(Us — ys) =0 <= Ep(Us) = Ey(yx) <= Ep[ys — Eo(y«)] =0
<= Y. € UE(E(y4)).

2. Comparing estimators and predictors

(1)

Risk function for estimators R R
With matrix-valued loss L(6, ) when 0 is estimated by 6, the risk is R5(6)) = Eg[L(0, 0)].
If both § and 6 are estimators for 6 and Rz(0) < R5(0) for all 0, i.e., Rz(0) — Rz(0) is a
non-negative definite matrix, then f is inadmissible since it is dominated by 9.

If in a class of estimators for 6, # dominates all other estimators, then 0 is the best
estimator in that class w.r.t. the specified risk.

Risk function for predictors
With matrix-valued loss L(¥xy«) when y, is predicted by s, Ry, (0) = Eg[L(Yx, y«)] is
the risk.



If both ¥, and ¥, are predictors for y, and Ry, (6) < Ry, (0) for all 0, i.e., Ry, (6) — Ry, (6)
is a non-negative definite matrix, then 7, is inadmissible since it is dominated by .

If in a class of predictors for y,, yx dominates all other predictors, then 7, is the best
estimator in that class w.r.t. the specified risk.

(3) Same classes
To identify best predictor in UP(y.) we need a risk function. To identify best estimator
in UE(E(yx)) we need a risk function. But two statistics classes UP(y.) and UE(E(yx))
are equal.
To identify best predictor in LUP(y,) we need a risk function. To identify best esti-
mator in LUE(E(y.)) we need a risk function. But two statistics classes LUP(y,) and
LUE(E(y«)) are equal.

3. Two risk functions

(1) Two risk functions
For estimation,
E[(0 - 0)(6 — 0)'] € R*** is MSCPE risk and E[(0 — 0)'(6 — 0)] € R is MSE risk.
If & dominates § by MSCPE risk, then the domination holds by MSE risk.
For prediction,
E[(. —y+) (s — y»)'] € R¥*¥ is MSCPE risk and E[(Jx — y+)'(Tx — y+)] € R is MSE risk.
If . dominates y, by MSCPE risk, the the domination holds by MSE risk.

Ex1: If § is the best estimator for 6 in a class by MSCPE, then it is also the best in the
class by MSE. If 7, is the best predictor for y, in a class by MSCPE, then it is also
the best in the class by MSE.

(2) Best estimator in UE(f) and best predictor in UP(y,) by MSCPE
If 6 € UE(A), then MSCPE risk is E[(6 — 6)(8 — 6)] = Cov(6).
Thus the best estimator in UE(#) is the minimum variance-covariance matrix unbiased
estimator (Minimum V-C UE).
If g. € UP(y.), then MSCPE risk is E[(Jx — y«)(Ux — yx)'] = Cov(gs — yx).

Ex2: If § € UE(9), then MSE risk is E[(6 — 6)( — 6)] = > var(6;).
So the best estimator in UE(#) by MSE risk is minimum total variance unbiased
estimator.

(3) The case where y and y, are independent
If y, is independent to y, then the best predictor for y,. in UP(y.) by MSCPE and the
best estimator for E(y,) in UE(E(y«)) by MSCPE are equal.
Proof. U« is the best predictor in UP(y,) by MSCPE
< Y € UP(yx) and Cov(ys — y«) < Cov(yx — y«) for all 7, € UP(y.)
< 7y« € UE(E(ys)) and Cov(yx) + Cov(yx) < Cov(yx) + Cov(yx)
for all y. € UE(E(yx))
<= ¥« € UE(E(ys)) and Cov(yx) < Cov(ys) for all y, € UE(E(y))
<= ¥, is the best estimator for E(y.) in UE(E(y«)) by MSCPE.
(4) Two sufficient conditions
(i) If g c UE(0), 6 = f(S) and S is a sufficient and complete statistics, then 0 is the
best estimator in UE(#) by MSCPE.
(i) If € UE(#) and Cov(d) = CRLB(6) = [nI(6)]!, then 8 is the best estimator in
UE(#) by MSCPE.



